A recent paper in JAMA, concerning science denial, tackles a problem of immense importance.[1] For us scientists, science denial negates our reason for being. Far more important though, is the effect on society. We need to think only of the vaccination fiasco. The JAMA paper used the difficulties that people with certain neurological conditions have with processing information as an analogy for the challenges that people with low scientific literacy have with interpreting complex graphs. Such difficulties leave room for false beliefs, including beliefs in conspiracy theories. While this analogy might shed light on neural mechanisms, there are far more important determinants of science denial in the population at large. One issue is the effect of education. Lack of educational attainment is consistently associated with science denial and the propensity to believe in conspiracy theories.[2]
Of course, this does not prove that improving science education would solve the problem. It may simply be the case that the cause of low educational achievement is also the cause of a predisposition to believe conspiracy theories. For example, low self-esteem or cognitive ability may be determinants of both low educational attainment and science denial. More likely, education plays a part, and both nature and nurture are involved. In that case, educational achievement conditional on early-life cognitive ability should correlate with resistance to conspiracy theories. We do not know whether this possibility has been examined.
Debunking misinformation with evidence or education is not enough. In responding to COVID-19, behavioural scientists were quick to point out that debunking could even lead to a backlash and increase the belief in misinformation. While the evidence on backlash is mixed, alternative approaches are still needed. One alternative is ‘pre-bunking’,[3] which is analogous to medical inoculation: people are exposed to a little bit of misinformation that activates their ability to critique it, but not so much misinformation as to be overwhelming. Web-based games like ‘Get Bad News’ apply this approach and are used by governments and schools to reduce people’s susceptibility to fake news. Reminding people before they engage with information to assess the accuracy of sources may also help.[4]
Yet, education, pre-bunking, and reminders are arguably ‘demand-side’ factors, which largely rely on the public selecting into engagement with science. These may be the very people least likely to denounce it. Given this, it is incumbent upon policymakers – and academics – to address the ‘supply-side’ factors, too. They must consider how to provide trustworthy, transparent, and accessible information, including to those with lower levels of education or cognitive ability. Sadly, this does not always happen; for example, little effort appears to have been directed towards testing some of the public health messaging about COVID-19 in the UK.[5] Confusing messaging can breed uncertainty, which is easily filled with simple but false information – including scientific information. Critiquing conspiracy theorists for their ‘bad science’ is unlikely to be persuasive. Instead, we advocate building trust in rigorous science.
Engaging the public with science is critically important; we can hardly think of a more important issue. Here at ARC West Midlands we take public engagement very seriously. We continuously seek opportunities to engage on science. In previous news blogs, we tested some of the government’s COVID-19 messaging ourselves,[6][7] and described our plans to use geospatially referenced maps to engage communities where COVID-19 infections are not under control.[8] We are engaging the public in numerous implementation science projects, including one based on mathematical modelling and another on the role of chance in decision-making. In all of these, development of the service, engagement with decision-makers, and with the public, go hand in hand.
Richard Lilford, ARC WM Director; Laura Kudrna, Research Fellow
References:
- Miller BL. Science Denial and COVID Conspiracy Theories: Potential Neurological
Mechanisms and Possible Responses. JAMA. 2020. - Van Prooijen J-W. Why Education Predicts Decreased Belief in Conspiracy Theories. Appl Cognit Psychol. 2016; 31(1).
- Van Bavel JJ, et al. Using social and behavioural science to support COVID-19 pandemic response. Nat Hum Behav. 2020; 4:460-71.
- Pennycook G, et al. Fighting COVID-19 misinformation on social media: Experimental evidence for a scalable accuracy-nudge intervention. Psychol Sci. 2020; 31(7):770-80.
- BBC News. Coronavirus: Minister defends ‘stay alert’ advice amid backlash. 10 May 2020.
- Kudrna L, Schmidtke KA. Changing the Message to Change the Response – Psychological Framing Effects During COVID-19. NIHR ARC West Midlands News Blog. 2020; 2(7): 7-9.
See also our London School of Economics and Political Science blog. - Schmidtke KA, Kudrna L. Speaking to Hearts Before Minds: Increasing Influenza Vaccine Uptake During COVID-19. NIHR ARC West Midlands News Blog. 2020; 2(10):9-11.
See also our London School of Economics and Political Sciences blog. - Lilford RJ, Watson S, Diggle P. The Land War in the Fight Against COVID-19. NIHR ARC West Midlands News Blog. 2020; 2(10):1-4.